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Foundation models for generalist medical 
artificial intelligence

Michael Moor1,6, Oishi Banerjee2,6, Zahra Shakeri Hossein Abad3, Harlan M. Krumholz4, 
Jure Leskovec1, Eric J. Topol5,7 ✉ & Pranav Rajpurkar2,7 ✉

The exceptionally rapid development of highly flexible, reusable artificial intelligence 
(AI) models is likely to usher in newfound capabilities in medicine. We propose a new 
paradigm for medical AI, which we refer to as generalist medical AI (GMAI). GMAI 
models will be capable of carrying out a diverse set of tasks using very little or no 
task-specific labelled data. Built through self-supervision on large, diverse datasets, 
GMAI will flexibly interpret different combinations of medical modalities, including 
data from imaging, electronic health records, laboratory results, genomics, graphs  
or medical text. Models will in turn produce expressive outputs such as free-text 
explanations, spoken recommendations or image annotations that demonstrate 
advanced medical reasoning abilities. Here we identify a set of high-impact potential 
applications for GMAI and lay out specific technical capabilities and training datasets 
necessary to enable them. We expect that GMAI-enabled applications will challenge 
current strategies for regulating and validating AI devices for medicine and will shift 
practices associated with the collection of large medical datasets.

Foundation models—the latest generation of AI models—are trained on 
massive, diverse datasets and can be applied to numerous downstream 
tasks1. Individual models can now achieve state-of-the-art performance 
on a wide variety of problems, ranging from answering questions about 
texts to describing images and playing video games2–4. This versatility 
represents a stark change from the previous generation of AI models, 
which were designed to solve specific tasks, one at a time.

Driven by growing datasets, increases in model size and advances 
in model architectures, foundation models offer previously unseen 
abilities. For example, in 2020 the language model GPT-3 unlocked 
a new capability: in-context learning, through which the model car-
ried out entirely new tasks that it had never explicitly been trained for, 
simply by learning from text explanations (or ‘prompts’) containing 
a few examples5. Additionally, many recent foundation models are 
able to take in and output combinations of different data modalities4,6. 
For example, the recent Gato model can chat, caption images, play 
video games and control a robot arm and has thus been described as 
a generalist agent2. As certain capabilities emerge only in the largest 
models, it remains challenging to predict what even larger models will 
be able to accomplish7.

Although there have been early efforts to develop medical founda-
tion models8–11, this shift has not yet widely permeated medical AI, 
owing to the difficulty of accessing large, diverse medical datasets, 
the complexity of the medical domain and the recency of this devel-
opment. Instead, medical AI models are largely still developed with a 
task-specific approach to model development. For instance, a chest 
X-ray interpretation model may be trained on a dataset in which every 
image has been explicitly labelled as positive or negative for pneu-
monia, probably requiring substantial annotation effort. This model 

would only detect pneumonia and would not be able to carry out the 
complete diagnostic exercise of writing a comprehensive radiology 
report. This narrow, task-specific approach produces inflexible models,  
limited to carrying out tasks predefined by the training dataset and 
its labels. In current practice, such models typically cannot adapt to 
other tasks (or even to different data distributions for the same task) 
without being retrained on another dataset. Of the more than 500 AI 
models for clinical medicine that have received approval by the Food 
and Drug Administration, most have been approved for only 1 or 2 
narrow tasks12.

Here we outline how recent advances in foundation model research 
can disrupt this task-specific paradigm. These include the rise of mul-
timodal architectures13 and self-supervised learning techniques14 that 
dispense with explicit labels (for example, language modelling15 and 
contrastive learning16), as well as the advent of in-context learning 
capabilities5.

These advances will instead enable the development of GMAI, a 
class of advanced medical foundation models. ‘Generalist’ implies that 
they will be widely used across medical applications, largely replacing 
task-specific models.

Inspired directly by foundation models outside medicine, we iden-
tify three key capabilities that distinguish GMAI models from conven-
tional medical AI models (Fig. 1). First, adapting a GMAI model to a new 
task will be as easy as describing the task in plain English (or another 
language). Models will be able to solve previously unseen problems 
simply by having new tasks explained to them (dynamic task specifi-
cation), without needing to be retrained3,5. Second, GMAI models can 
accept inputs and produce outputs using varying combinations of data 
modalities (for example, can take in images, text, laboratory results or 
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any combination thereof). This flexible interactivity contrasts with 
the constraints of more rigid multimodal models, which always use 
predefined sets of modalities as input and output (for example, must 
always take in images, text and laboratory results together). Third, GMAI 
models will formally represent medical knowledge, allowing them to 
reason through previously unseen tasks and use medically accurate 
language to explain their outputs.

We list concrete strategies for achieving this paradigm shift in medi-
cal AI. Furthermore, we describe a set of potentially high-impact appli-
cations that this new generation of models will enable. Finally, we point 
out core challenges that must be overcome for GMAI to deliver the 
clinical value it promises.

The potential of generalist models in medical AI
GMAI models promise to solve more diverse and challenging tasks than 
current medical AI models, even while requiring little to no labels for 
specific tasks. Of the three defining capabilities of GMAI, two enable 
flexible interactions between the GMAI model and the user: first, the 
ability to carry out tasks that are dynamically specified; and second, 
the ability to support flexible combinations of data modalities. The 
third capability requires that GMAI models formally represent medi-
cal domain knowledge and leverage it to carry out advanced medical 
reasoning. Recent foundation models already exhibit individual aspects 
of GMAI, by flexibly combining several modalities2 or making it possible 
to dynamically specify a new task at test time5, but substantial advances 
are still required to build a GMAI model with all three capabilities. For 
example, existing models that show medical reasoning abilities (such 
as GPT-3 or PaLM) are not multimodal and do not yet generate reliably 
factual statements.

 
Flexible interactions
GMAI offers users the ability to interact with models through cus-
tom queries, making AI insights easier for different audiences to 
understand and offering unprecedented flexibility across tasks and 
settings. In current practice, AI models typically handle a narrow 
set of tasks and produce a rigid, predetermined set of outputs. For 
example, a current model might detect a specific disease, taking 
in one kind of image and always outputting the likelihood of that 
disease. By contrast, a custom query allows users to come up with 
questions on the fly: “Explain the mass appearing on this head MRI 
scan. Is it more likely a tumour or an abscess?”. Furthermore, que-
ries can allow users to customize the format of their outputs: “This 
is a follow-up MRI scan of a patient with glioblastoma. Outline any  
tumours in red”.

Custom queries will enable two key capabilities—dynamic task speci-
fication and multimodal inputs and outputs—as follows.

Dynamic task specification. Custom queries can teach AI mod-
els to solve new problems on the fly, dynamically specifying new 
tasks without requiring models to be retrained. For example, GMAI 
can answer highly specific, previously unseen questions: “Given 
this ultrasound, how thick is the gallbladder wall in millimetres?”.  
Unsurprisingly, a GMAI model may struggle to complete new tasks 
that involve unknown concepts or pathologies. In-context learning 
then allows users to teach the GMAI about a new concept with few 
examples: “Here are the medical histories of ten previous patients 
with an emerging disease, an infection with the Langya henipavirus. 
How likely is it that our current patient is also infected with Langya  
henipavirus?”17.
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Fig. 1 | Overview of a GMAI model pipeline. a, A GMAI model is trained on 
multiple medical data modalities, through techniques such as self-supervised 
learning. To enable flexible interactions, data modalities such as images or data 
from EHRs can be paired with language, either in the form of text or speech data. 
Next, the GMAI model needs to access various sources of medical knowledge to 
carry out medical reasoning tasks, unlocking a wealth of capabilities that can 
be used in downstream applications. The resulting GMAI model then carries 

out tasks that the user can specify in real time. For this, the GMAI model can 
retrieve contextual information from sources such as knowledge graphs or 
databases, leveraging formal medical knowledge to reason about previously 
unseen tasks. b, The GMAI model builds the foundation for numerous 
applications across clinical disciplines, each requiring careful validation and 
regulatory assessment.
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Multimodal inputs and outputs. Custom queries can allow users 
to include complex medical information in their questions, freely 
mixing modalities. For example, a clinician might include multiple  
images and laboratory results in their query when asking for a diag-
nosis. GMAI models can also flexibly incorporate different modalities 
into responses, such as when a user asks for both a text answer and an 
accompanying visualization. Following previous models such as Gato, 
GMAI models can combine modalities by turning each modality’s data 
into ‘tokens’, each representing a small unit (for example, a word in a 
sentence or a patch in an image) that can be combined across modali-
ties. This blended stream of tokens can then be fed into a transformer 
architecture18, allowing GMAI models to integrate a given patient’s 
entire history, including reports, waveform signals, laboratory results, 
genomic profiles and imaging studies.

Medical domain knowledge
In stark contrast to a clinician, conventional medical AI models typically 
lack prior knowledge of the medical domain before they are trained 
for their particular tasks. Instead, they have to rely solely on statisti-
cal associations between features of the input data and the prediction 
target, without having contextual information (for example, about 
pathophysiological processes). This lack of background makes it harder 
to train models for specific medical tasks, particularly when data for 
the tasks are scarce.

GMAI models can address these shortcomings by formally represent-
ing medical knowledge. For example, structures such as knowledge 
graphs can allow models to reason about medical concepts and relation-
ships between them. Furthermore, building on recent retrieval-based 
approaches, GMAI can retrieve relevant context from existing data-
bases, in the form of articles, images or entire previous cases19,20.

The resulting models can raise self-explanatory warnings: “This 
patient is likely to develop acute respiratory distress syndrome, because 
the patient was recently admitted with a severe thoracic trauma and 
because the patient’s partial pressure of oxygen in the arterial blood has 
steadily decreased, despite an increased inspired fraction of oxygen”.

As a GMAI model may even be asked to provide treatment recom-
mendations, despite mostly being trained on observational data, the 
model’s ability to infer and leverage causal relationships between 
medical concepts and clinical findings will play a key role for clinical 
applicability21.

Finally, by accessing rich molecular and clinical knowledge, a GMAI 
model can solve tasks with limited data by drawing on knowledge of 
related problems, as exemplified by initial works on AI-based drug 
repurposing22.

Use cases of GMAI
We present six potential use cases for GMAI that target different user 
bases and disciplines, although our list is hardly exhaustive. Although 
there have already been AI efforts in these areas, we expect GMAI will 
enable comprehensive solutions for each problem.

Grounded radiology reports. GMAI enables a new generation of ver-
satile digital radiology assistants, supporting radiologists throughout 
their workflow and markedly reducing workloads. GMAI models can 
automatically draft radiology reports that describe both abnormali-
ties and relevant normal findings, while also taking into account the 
patient’s history. These models can provide further assistance to clini-
cians by pairing text reports with interactive visualizations, such as by 
highlighting the region described by each phrase. Radiologists can also 
improve their understanding of cases by chatting with GMAI models: 
“Can you highlight any new multiple sclerosis lesions that were not 
present in the previous image?”.

A solution needs to accurately interpret various radiology modali-
ties, noticing even subtle abnormalities. Furthermore, it must integrate 

information from a patient’s history, including sources such as indica-
tions, laboratory results and previous images, when describing an 
image. It also needs to communicate with clinicians using multiple 
modalities, providing both text answers and dynamically annotated 
images. To do so, it must be capable of visual grounding, accurately 
pointing out exactly which part of an image supports any statement. 
Although this may be achieved through supervised learning on 
expert-labelled images, explainability methods such as Grad-CAM 
could enable self-supervised approaches, requiring no labelled data23.

Augmented procedures. We anticipate a surgical GMAI model 
that can assist surgical teams with procedures: “We cannot find the  
intestinal rupture. Check whether we missed a view of any intestinal 
section in the visual feed of the last 15 minutes”. GMAI models may 
carry out visualization tasks, potentially annotating video streams of 
a procedure in real time. They may also provide information in spoken 
form, such as by raising alerts when steps of a procedure are skipped 
or by reading out relevant literature when surgeons encounter rare 
anatomical phenomena.

This model can also assist with procedures outside the operating 
room, such as with endoscopic procedures. A model that captures 
topographic context and reasons with anatomical knowledge can draw 
conclusions about previously unseen phenomena. For instance, it could 
deduce that a large vascular structure appearing in a duodenoscopy 
may indicate an aortoduodenal fistula (that is, an abnormal connection 
between aorta and the small intestine), despite never having encoun-
tered one before (Fig. 2, right panel). GMAI can solve this task by first 
detecting the vessel, second identifying the anatomical location, and 
finally considering the neighbouring structures.

A solution needs to integrate vision, language and audio modalities, 
using a vision–audio–language model to accept spoken queries and 
carry out tasks using the visual feed. Vision–language models have 
already gained traction, and the development of models that incorpo-
rate further modalities is merely a question of time24. Approaches may 
build on previous work that combines language models and knowledge 
graphs25,26 to reason step-by-step about surgical tasks. Additionally, 
GMAI deployed in surgical settings will probably face unusual clinical 
phenomena that cannot be included during model development, owing 
to their rarity, a challenge known as the long tail of unseen conditions27. 
Medical reasoning abilities will be crucial for both detecting previously 
unseen outliers and explaining them, as exemplified in Fig. 2.

Bedside decision support. GMAI enables a new class of bedside clinical 
decision support tools that expand on existing AI-based early warning 
systems, providing more detailed explanations as well as recommenda-
tions for future care. For example, GMAI models for bedside decision 
support can leverage clinical knowledge and provide free-text explana-
tions and data summaries: “Warning: This patient is about to go into 
shock. Her circulation has destabilized in the last 15 minutes <link to 
data summary>. Recommended next steps: <link to checklist>”.

A solution needs to parse electronic health record (EHR) sources 
(for example, vital and laboratory parameters, and clinical notes) that 
involve multiple modalities, including text and numeric time series 
data. It needs to be able to summarize a patient’s current state from 
raw data, project potential future states of the patient and recommend 
treatment decisions. A solution may project how a patient’s condi-
tion will change over time, by using language modelling techniques to 
predict their future textual and numeric records from their previous 
data. Training datasets may specifically pair EHR time series data with 
eventual patient outcomes, which can be collected from discharge 
reports and ICD (International Classification of Diseases) codes. In 
addition, the model must be able to compare potential treatments and 
estimate their effects, all while adhering to therapeutic guidelines and 
other relevant policies. The model can acquire the necessary knowledge 
through clinical knowledge graphs and text sources such as academic 
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publications, educational textbooks, international guidelines and local 
policies. Approaches may be inspired by REALM, a language model that 
answers queries by first retrieving a single relevant document and then 
extracting the answer from it, making it possible for users to identify 
the exact source of each answer20.

Interactive note-taking. Documentation represents an integral but 
labour-intensive part of clinical workflows. By monitoring electronic 
patient information as well as clinician–patient conversations, GMAI 
models will preemptively draft documents such as electronic notes 
and discharge reports for clinicians to merely review, edit and approve. 
Thus, GMAI can substantially reduce administrative overhead, allowing 
clinicians to spend more time with patients.

A GMAI solution can draw from recent advances in speech-to-text 
models28, specializing techniques for medical applications. It must 
accurately interpret speech signals, understanding medical jargon 

and abbreviations. Additionally, it must contextualize speech data with 
information from the EHRs (for example, diagnosis list, vital parameters 
and previous discharge reports) and then generate free-text notes or 
reports. It will be essential to obtain consent before recording any 
interaction with a patient. Even before such recordings are collected 
in large numbers, early note-taking models may already be developed 
by leveraging clinician–patient interaction data collected from chat 
applications.

Chatbots for patients. GMAI has the potential to power new apps 
for patient support, providing high-quality care even outside clini-
cal settings. For example, GMAI can build a holistic view of a patient’s 
condition using multiple modalities, ranging from unstructured  
descriptions of symptoms to continuous glucose monitor readings to 
patient-provided medication logs. After interpreting these heterogene-
ous types of data, GMAI models can interact with the patient, providing 
detailed advice and explanations. Importantly, GMAI enables accessible 
communication, providing clear, readable or audible information on 
the patient’s schedule. Whereas similar apps rely on clinicians to offer 
personalized support at present29, GMAI promises to reduce or even 
remove the need for human expert intervention, making apps available 
on a larger scale. As with existing live chat applications, users could still 
engage with a human counsellor on request.

Building patient-facing chatbots with GMAI raises two special chal-
lenges. First, patient-facing models must be able to communicate 
clearly with non-technical audiences, using simple, clear language with-
out sacrificing the accuracy of the content. Including patient-focused 
medical texts in training datasets may enable this capability. Second, 
these models need to work with diverse data collected by patients. 
Patient-provided data may represent unusual modalities; for example, 
patients with strict dietary requirements may submit before-and-after 
photos of their meals so that GMAI models can automatically monitor 
their food intake. Patient-collected data are also likely to be noisier 
compared to data from a clinical setting, as patients may be more prone 
to error or use less reliable devices when collecting data. Again, incor-
porating relevant data into training can help overcome this challenge. 
However, GMAI models also need to monitor their own uncertainty and 
take appropriate action when they do not have enough reliable data.

Text-to-protein generation. GMAI could generate protein amino 
acid sequences and their three-dimensional structures from textual 
prompts. Inspired by existing generative models of protein sequences30, 
such a model could condition its generation on desired functional 
properties. By contrast, a biomedically knowledgeable GMAI model 
promises protein design interfaces that are as flexible and easy to 
use as concurrent text-to-image generative models such as Stable 
Diffusion or DALL-E31,32. Moreover, by unlocking in-context learning 
capabilities, a GMAI-based text-to-protein model may be prompted 
with a handful of example instructions paired with sequences to  
dynamically define a new generation task, such as the generation of a 
protein that binds with high affinity to a specified target while fulfilling 
additional constraints.

There have already been early efforts to develop foundation models 
for biological sequences33,34, including RFdiffusion, which generates 
proteins on the basis of simple specifications (for example, a binding 
target)35. Building on this work, GMAI-based solution can incorporate 
both language and protein sequence data during training to offer a 
versatile text interface. A solution could also draw on recent advances 
in multimodal AI such as CLIP, in which models are jointly trained on 
paired data of different modalities16. When creating such a training 
dataset, individual protein sequences must be paired with relevant 
text passages (for example, from the body of biological literature) that 
describe the properties of the proteins. Large-scale initiatives, such as 
UniProt, that map out protein functions for millions of proteins, will 
be indispensable for this effort36.
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Narrowed joint space and osteophytes 
compatible with osteoarthritis of the 
right hip.

Augmented procedures

Bedside decision support

Why?

EHRs Audio Text

Insulin 
required!

To correct 
hyperkalaemia.

Explain the object
appearing on the left
on the screen.

a

b

c

The object resembles an 
artery wall, situated close 
proximity to the duodenum. 
Given size and location, it’s 
most likely the aorta 
(aortoduodenal �stula).

!

Fig. 2 | Illustration of three potential applications of GMAI. a, GMAI could 
enable versatile and self-explanatory bedside decision support. b, Grounded 
radiology reports are equipped with clickable links for visualizing each finding. 
c, GMAI has the potential to classify phenomena that were never encountered 
before during model development. In augmented procedures, a rare outlier 
finding is explained with step-by-step reasoning by leveraging medical domain 
knowledge and topographic context. The presented example is inspired by a 
case report58. Image of the fistula in panel c adapted from ref. 58, CC BY 3.0.

https://creativecommons.org/licenses/by/3.0/


Nature  |  Vol 616  |  13 April 2023  |  263

Opportunities and challenges of GMAI
GMAI has the potential to affect medical practice by improving care 
and reducing clinician burnout. Here we detail the overarching advan-
tages of GMAI models. We also describe critical challenges that must 
be addressed to ensure safe deployment, as GMAI models will operate 
in particularly high-stakes settings, compared to foundation models 
in other fields.

Paradigm shifts with GMAI
Controllability. GMAI allows users to finely control the format of its 
outputs, making complex medical information easier to access and 
understand. For example, there will be GMAI models that can rephrase 
natural language responses on request. Similarly, GMAI-provided visu-
alizations may be carefully tailored, such as by changing the viewpoint 
or labelling important features with text. Models can also potentially 
adjust the level of domain-specific detail in their outputs or translate 
them into multiple languages, communicating effectively with diverse 
users. Finally, GMAI’s flexibility allows it to adapt to particular regions 
or hospitals, following local customs and policies. Users may need for-
mal instruction on how to query a GMAI model and to use its outputs 
most effectively.

Adaptability. Existing medical AI models struggle with distribution 
shifts, in which distributions of data shift owing to changes in tech-
nologies, procedures, settings or populations37,38. However, GMAI 
can keep pace with shifts through in-context learning. For example, 
a hospital can teach a GMAI model to interpret X-rays from a brand- 
new scanner simply by providing prompts that show a small set of  
examples. Thus, GMAI can adapt to new distributions of data on the fly, 
whereas conventional medical AI models would need to be retrained 
on an entirely new dataset. At present, in-context learning is observed 
predominantly in large language models39. To ensure that GMAI can 
adapt to changes in context, a GMAI model backbone needs to be 
trained on extremely diverse data from multiple, complementary 
sources and modalities. For instance, to adapt to emerging variants 
of coronavirus disease 2019, a successful model can retrieve charac-
teristics of past variants and update them when confronted with new 
context in a query. For example, a clinician might say, “Check these 
chest X-rays for Omicron pneumonia. Compared to the Delta variant, 
consider infiltrates surrounding the bronchi and blood vessels as 
indicative signs”40.

Although users can manually adjust model behaviour through 
prompts, there may also be a role for new techniques to automatically 
incorporate human feedback. For example, users may be able to rate 
or comment on each output from a GMAI model, much as users rate 
outputs of ChatGPT (released by OpenAI in 2022), an AI-powered chat 
interface. Such feedback can then be used to improve model behaviour, 
following the example of InstructGPT, a model created by using human 
feedback to refine GPT-3 through reinforcement learning41.

Applicability. Large-scale AI models already serve as the foundation 
for numerous downstream applications. For instance, within months 
after its release, GPT-3 powered more than 300 apps across various 
industries42. As a promising early example of a medical foundation 
model, CheXzero can be applied to detect dozens of diseases in chest 
X-rays without being trained on explicit labels for these diseases9. Like-
wise, the shift towards GMAI will drive the development and release of 
large-scale medical AI models with broad capabilities, which will form 
the basis for various downstream clinical applications. Many applica-
tions will interface with the GMAI model itself, directly using its final 
outputs. Others may use intermediate numeric representations, which 
GMAI models naturally generate in the process of producing outputs, as 
inputs for small specialist models that can be cheaply built for specific 
tasks. However, this flexible applicability can act as a double-edged 

sword, as any failure mode that exists in the foundation model will be 
propagated widely throughout the downstream applications.

Challenges of GMAI
Validation. GMAI models will be uniquely difficult to validate, owing to 
their unprecedented versatility. At present, AI models are designed for 
specific tasks, so they need to be validated only for those predefined 
use cases (for example, diagnosing a particular type of cancer from a 
brain MRI). However, GMAI models can carry out previously unseen 
tasks set forth by an end user for the first time (for example, diagnos-
ing any disease in a brain MRI), so it is categorically more challenging 
to anticipate all of their failure modes. Developers and regulators will 
be responsible for explaining how GMAI models have been tested and 
what use cases they have been approved for. GMAI interfaces them-
selves should be designed to raise ‘off-label usage’ warnings on entering 
uncharted territories, instead of confidently fabricating inaccurate  
information. More generally, GMAI’s uniquely broad capabilities 
require regulatory foresight, demanding that institutional and gov-
ernmental policies adapt to the new paradigm, and will also reshape 
insurance arrangements and liability assignment.

Verification. Compared to conventional AI models, GMAI models can 
handle unusually complex inputs and outputs, making it more difficult 
for clinicians to determine their correctness. For example, conventional 
models may consider only an imaging study or a whole-slide image 
when classifying a patient’s cancer. In each case, a sole radiologist or 
pathologist could verify whether the model’s outputs are correct. 
However, a GMAI model may consider both kinds of inputs and may 
output an initial classification, a recommendation for treatment and 
a multimodal justification involving visualizations, statistical analyses 
and references to the literature. In this case, a multidisciplinary panel 
(consisting of radiologists, pathologists, oncologists and additional 
specialists) may be needed to judge the GMAI’s output. Fact-checking 
GMAI outputs therefore represents a serious challenge, both during 
validation and after models are deployed.

Creators can make it easier to verify GMAI outputs by incorporating 
explainability techniques. For example, a GMAI’s outputs might include 
clickable links to supporting passages in the literature, allowing clini-
cians to more efficiently verify GMAI predictions. Other strategies for 
fact-checking a model’s output without human expertise have recently 
been proposed43. Finally, it is vitally important that GMAI models accu-
rately express uncertainty, thereby preventing overconfident state-
ments in the first place.

Social biases. Previous work has already shown that medical AI models 
can perpetuate biases and cause harm to marginalized populations. 
They can acquire biases during training, when datasets either under-
represent certain groups of patients or contain harmful correlations44,45. 
These risks will probably be even more pronounced when develop-
ing GMAI. The unprecedented scale and complexity of the necessary 
training datasets will make it difficult to ensure that they are free of 
undesirable biases. Although biases already pose a challenge for con-
ventional AI in health, they are of particular relevance for GMAI as a 
recent large-scale evaluation showed that social bias can increase with 
model scale46.

GMAI models must be thoroughly validated to ensure that they do 
not underperform on particular populations such as minority groups. 
Furthermore, models will need to undergo continuous auditing and 
regulation even after deployment, as new issues will arise as models 
encounter new tasks and settings. Prize-endowed competitions could 
incentivize the AI community to further scrutinize GMAI models. For 
instance, participants might be rewarded for finding prompts that 
produce harmful content or expose other failure modes. Swiftly iden-
tifying and fixing biases must be an utmost priority for developers, 
vendors and regulators.
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Privacy. The development and use of GMAI models poses serious risks 
to patient privacy. GMAI models may have access to a rich set of patient 
characteristics, including clinical measurements and signals, molecular 
signatures and demographic information as well as behavioural and 
sensory tracking data. Furthermore, GMAI models will probably use 
large architectures, but larger models are more prone to memorizing 
training data and directly repeating it to users47. As a result, there is a 
serious risk that GMAI models could expose sensitive patient data in 
training datasets. By means of deidentification and limiting the amount 
of information collected for individual patients, the damage caused by 
exposed data can be reduced.

However, privacy concerns are not limited to training data, as 
deployed GMAI models may also expose data from current patients. 
Prompt attacks can trick models such as GPT-3 into ignoring previous 
instructions48. As an example, imagine that a GMAI model has been 
instructed never to reveal patient information to uncredentialed users. 
A malicious user could force the model to ignore that instruction to 
extract sensitive data.

Scale. Recent foundation models have increased markedly in size, 
driving up costs associated with data collection and model training. 
Models of this scale require massive training datasets that, in the case 
of GPT-3, contain hundreds of billions of tokens and are expensive to 
collect. Furthermore, PaLM, a 540-billion-parameter model developed 
by Google, required an estimated 8.4 million hours’ worth of tensor pro-
cessing unit v4 chips for training, using roughly 3,000 to 6,000 chips 
at a time, amounting to millions of dollars in computational costs49. 
Additionally, developing such large models brings a substantial envi-
ronmental cost, as training each model has been estimated to generate 
up to hundreds of tons of CO2 equivalent50.

These costs raise the question of how large datasets and models 
should be. One recent study established a link between dataset size and 
model size, recommending 20 times more tokens than parameters for 
optimal performance, yet existing foundation models were successfully 
trained with a lower token-to-parameter ratio51. It thus remains difficult 
to estimate how large models and datasets must be when developing 
GMAI models, especially because the necessary scale depends heavily 
on the particular medical use case.

Data collection will pose a particular challenge for GMAI develop-
ment, owing to the need for unprecedented amounts of medical data. 
Existing foundation models are typically trained on heterogeneous 
data obtained by crawling the web, and such general-purpose data 
sources can potentially be used to pretrain GMAI models (that is, 
carry out an initial preparatory round of training). Although these 
datasets do not focus on medicine, such pretraining can equip GMAI 
models with useful capabilities. For example, by drawing on medical 
texts present within their training datasets, general-purpose models 
such as Flan-PaLM or ChatGPT can accurately answer medical ques-
tions, achieving passing scores on the United States Medical Licensing 
Exam10,52,53. Nevertheless, GMAI model development will probably also 
require massive datasets that specifically focus on the medical domain 
and its modalities. These datasets must be diverse, anonymized and 
organized in compatible formats, and procedures for collecting and 
sharing data will need to comply with heterogeneous policies across 
institutions and regions. Although gathering such large datasets will 
pose a substantial challenge, these data will generally not require costly 
expert labels, given the success of self-supervision9,54. Additionally, 
multimodal self-supervision techniques can be used to train models on 
multiple datasets containing measurements from a few modalities each, 
reducing the need for large, expensive datasets that contain measure-
ments from many modalities per patient. In other words, a model can 
be trained on one dataset with EHR and MRI data and a second with EHR 
and genomic data, without requiring a large dataset that contains EHR, 
MRI and genomic data, jointly. Large-scale data-sharing efforts, such 

as the MIMIC (Medical Information Mart for Intensive Care) database55 
or the UK Biobank56, will play a critical role in GMAI, and they should be 
extended to underrepresented countries to create larger, richer and 
more inclusive training datasets.

The size of GMAI models will also cause technical challenges. In 
addition to being costly to train, GMAI models can be challenging to 
deploy, requiring specialized, high-end hardware that may be difficult 
for hospitals to access. For certain use cases (for example, chatbots), 
GMAI models can be stored on central compute clusters maintained 
by organizations with deep technical expertise, as DALL-E or GPT-3 
are. However, other GMAI models may need to be deployed locally 
in hospitals or other medical settings, removing the need for a stable 
network connection and keeping sensitive patient data on-site. In these 
cases, model size may need to be reduced through techniques such 
as knowledge distillation, in which large-scale models teach smaller 
models that can be more easily deployed under practical constraints57.

Conclusion
Foundation models have the potential to transform healthcare. The 
class of advanced foundation models that we have described, GMAI, 
will interchangeably parse multiple data modalities, learn new tasks on 
the fly and leverage domain knowledge, offering opportunities across a 
nearly unlimited range of medical tasks. GMAI’s flexibility allows models 
to stay relevant in new settings and keep pace with emerging diseases 
and technologies without needing to be constantly retrained from 
scratch. GMAI-based applications will be deployed both in traditional 
clinical settings and on remote devices such as smartphones, and we 
predict that they will be useful to diverse audiences, enabling both 
clinician-facing and patient-facing applications.

Despite their promise, GMAI models present unique challenges. 
Their extreme versatility makes them difficult to comprehensively 
validate, and their size can bring increased computational costs. There 
will be particular difficulties associated with data collection and access, 
as GMAI’s training datasets must be not only large but also diverse, 
with adequate privacy protections. We implore the AI community and 
clinical stakeholders to carefully consider these challenges early on, 
to ensure that GMAI consistently delivers clinical value. Ultimately, 
GMAI promises unprecedented possibilities for healthcare, supporting 
clinicians amid a range of essential tasks, overcoming communication 
barriers, making high-quality care more widely accessible, and reducing 
the administrative burden on clinicians to allow them to spend more 
time with patients.
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